Semicircular canal afferents similarly encode active and passive head-on-body rotations: implications for the role of vestibular efference.
نویسندگان
چکیده
The vestibular receptors in the labyrinth receive innervation from centrifugally projecting efferent fibers. The influence of these efferents on information processing by vestibular afferents in primates has not been determined. One commonly held notion is that efferent activation during large-amplitude, active head movements would result in an increase in the resting discharge rate and in a reduction of the rotational sensitivity of afferents. Such an effect would increase the dynamic range of afferents involved in the encoding of head movements. To test this hypothesis, we recorded from afferents innervating the semicircular canals in alert macaques during passive head-on-body rotations and during active head movements that included gaze shifts and gaze pursuit. Extracellular, single-unit recordings were obtained from 24 afferent fibers innervating the horizontal, superior, and posterior canals. Based on the normalized coefficient of variation of the interspike interval for these units, our sample contained six regularly discharging, six intermediate, and 12 irregularly discharging afferents. Responses were analyzed using a least squares regression to determine the bias discharge rate of each unit and sensitivity to head velocity and acceleration. We found no difference in bias discharge rate or rotational sensitivity of the afferent responses for the different stimulus conditions tested. Our results indicate that semicircular canal afferents encode information about head rotation similarly for self generated and passively applied head-on-body movements.
منابع مشابه
Response of vestibular-nerve afferents to active and passive rotations under normal conditions and after unilateral labyrinthectomy.
We investigated the possible contribution of signals carried by vestibular-nerve afferents to long-term processes of vestibular compensation after unilateral labyrinthectomy. Semicircular canal afferents were recorded from the contralesional nerve in three macaque monkeys before [horizontal (HC) = 67, anterior (AC) = 66, posterior (PC) = 50] and 1-12 mo after (HC = 192, AC = 86, PC = 57) lesion...
متن کاملEffects of canal plugging on the vestibuloocular reflex and vestibular nerve discharge during passive and active head rotations.
Mechanical occlusion (plugging) of the slender ducts of semicircular canals has been used in the clinic as well as in basic vestibular research. Here, we investigated the effect of canal plugging in two macaque monkeys on the horizontal vestibuloocular reflex (VOR) and the responses of vestibular-nerve afferents during passive head rotations. Afferent responses to active head movements were als...
متن کاملEffects of Canal Plugging on the Vestibulo-ocular Reflex and 2 Vestibular Nerve Discharge during Passive and Active Head
30 Mechanical occlusion (plugging) of the slender ducts of semicircular canals has been 31 used in the clinic as well as in basic vestibular research. Here, we investigated the effect 32 of canal plugging in two macaque monkeys on the horizontal vestibulo-ocular reflex 33 (VOR) and the responses of vestibular-nerve afferents during passive head rotations. 34 Afferent responses to active head mo...
متن کاملSignal processing in the vestibular system during active versus passive head movements.
In everyday life, vestibular receptors are activated by both self-generated and externally applied head movements. Traditionally, it has been assumed that the vestibular system reliably encodes head-in-space motion throughout our daily activities and that subsequent processing by upstream cerebellar and cortical pathways is required to transform this information into the reference frames requir...
متن کاملSelective processing of vestibular reafference during self-generated head motion.
The vestibular sensory apparatus and associated vestibular nuclei are generally thought to encode head-in-space motion. Angular head-in-space velocity is detected by vestibular hair cells that are located within the semicircular canals of the inner ear. In turn, the afferent fibers of the vestibular nerve project to neurons in the vestibular nuclei, which, in head-restrained animals, similarly ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 22 11 شماره
صفحات -
تاریخ انتشار 2002